Pengaruh Preprocessing Data pada Metode SVR dalam Memprediksi Permintaan Obat

Bakhtiyar Hadi Prakoso

Abstract


Stock out merupakan permasalahan yang sering muncul pada Instalasi Farmasi Rumah Sakit. Kondisi ini disebabkan karena permintaan obat lebih banyak dari stok obat yang ada. Upaya untuk mengatasi stock out dengan mengelola persediaan obat dengan benar salah satunya adalah dengan cara memprediksi permintaan obat. Pada penelitian ini akan digunakan metode SVR. Dalam perhitungan SVR melewati proses sebuah preprocesing data yang berfungsi untuk meningkatkan akurasi hasil. Penelitian ini akan membandingkan metode preprocessing linear scaling dengan z normalization. Hasil MAPE menunjukkan preprocessing dengan linear scaling  menghasilkan nilai yang lebih baik dibandingkan dengan z-normalization


Full Text:

PDF

References


Bergmeir, C., Costantini, M., & Bennitez, J. M. (2014). On the usefulness of cross-validation for directional forecast evaluation. Computational Statistics and Data Analysis, 76(2009), 132–143. doi:10.1016/j.csda.2014.02.001

Crone, S. F., Guajardo, J., & Weber, R. (2006). The impact of preprocessing on support vector regression and neural networks in time series prediction. Proceedings of the 2006 International Conference on Data Mining, DMIN, 37–44. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.86.6266&rep=rep1&type=pdf

Fruggiero, F., Iannone, R., Martino, G., Miranda, S., & Riemma, S. (2012). A forecast model for pharmaceutical requirements based on an artificial neural network. Service Operations and Logistics, and Informatics (SOLI), 2012 IEEE International Conference on, 263–268.

Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679–688. doi:10.1016/j.ijforecast.2006.03.001

Kumar, S., & Chakravarty, A. (2015). ABC–VED analysis of expendable medical stores at a tertiary care hospital. Medical Journal Armed Forces India, 71(1), 24–27. doi:10.1016/j.mjafi.2014.07.002

Levis, A., & Papageorgiou, L. (2005). Customer demand forecasting via support vector regression analysis. Cemical Engineering Reaserch and Design, (August). doi:10.1205/cherd.04246

Lin, C., & Weng, R. C. (2004). Simple Probabilistic Predictions for Support Vector Regression. Statistics, 1–16. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.98.8313&rep=rep1&type=pdf

Smola, A., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14, 199–222. doi:10.1023/B:STCO.0000035301.49549.88

Uthayakumar, R., & Priyan, S. (2013). Pharmaceutical supply chain and inventory management strategies for optimization: A study on pharmaceutical company and hospital. Operations Research for Health Care. doi:10.1016/j.orhc.2013.08.001

Vapnik, V. N. (1999). An overview of statistical learning theory. IEEE Transactions on Neural Networks / a Publication of the IEEE Neural Networks Council, 10(5), 988–999. doi:10.1109/72.788640




DOI: https://doi.org/10.32528/justindo.v2i2.1045

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Bakhtiyar Hadi Prakoso

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

View My Stats