Rancang Bangun Data Warehouse dan R Studio Serta Pemanfaatanya dalam Peramalan Pola Konsumsi Masyarakat di Kabupaten Jember

Lutfi Ali Muharom, Alfian Futuhul Hadi, Dian Anggraeni

Abstract


As we know that we have to process and store the data recording well. Data warehouse is one of data processing method that use to support the decission-making process. The data warehouse process started from colecting, selecting, designing and uploading data in to data warehouse. In this research, we use the data of SUSENAS from year of 1997 until 2012. We took the daily consumption data (household expendature) to be proceed in data warehouse. The implementation of web based R studio program can facilitate the users to acces R . R can be accessed by any kind of devices which have browser and internet acces by any kind of devices which have browse and internet acces. The connectivity of R studio to data warehouse can be simplify the users to access and process the data. As the result of consumption patterns (staple food) forecasting in jember, we conclude that the best forecasting method for forecasting method for forecasting using AR(1) model. The limited data collections caused the ensemble wouldn’t become the best method , whereas, it should be the best method.

Full Text:

PDF (Indonesian)

References


Bishop, C.M. 1995. Neural Network For Pattern Recognition. New York: Oxford University Press Inc.

Box, G.E.P, Jenkins, G.M. 1976. Time Series Analysis Forecasting And Control Revised Edition. Oakland: Holden-Day, Inc

Breiman, L. 1996. Stacked Regression, Machine Learning, Vol. 24, pp.59-64.

Data Susenas 1997-2012 , Diunduh Pada 25-28 Maret 2012

FAO. 2012. The State Of Food Insecurity In The Word 2012. Rome.

J. Supranto. 2000. Statistic Teori Dan Aplikasi. Jakarta: Erlangga.

Kementan. 2012. Laporan Kinerja Kementrian Pertanian Tahun 2011. Jakarta: Kementan.

Khashei, M., Bijari, M., Ardali,G.A.R. 2007. Improvement Of Auto-Regressive Integrated Moving Average Models Using Fuzzy Logic And Artificial Neural Network. Neurocomputing Vol.72:46.

Mukhlis F., Bayu Adhi T. 2011. Rancang Bangunan Data Warehouse Untuk Menunjang Evaluasi Akademik Di Fakultas., Prosiding Konferensi Nasional Teknologi Informasi Dan Aplikasinya (KNTIA ).

Prayoto. 2008. Peranan Perguruan Tinggi Dalam Pengembangan IPTEK. Seminar Nasional Dies Natalis 45 UGM

Pusdatin Kementaan. 2012. Statistik Kosumsi Pangan Tahun 2012. Jakarta, Kementan.

Radityo A,N., Johan T., Tony J, H. 2008. Aplikasi Data Warehouse Untuk Analisa Penjual Mobil Berbasis Multidimensional Modeling (MDM) Dan Star Schema Design. Jurnal Teknologi Informasi-AITI,Vol 5 No 2.

Shu,C., Burn,D.H. 2004. Artificial Neurl Network Ensembles And Their Apliction In Pooled Flood Frequency Anlysis. Water Resource Research, Vol 40,9.

Suryana, A. Penganekaragaman Konsumsi Pangan Dan Gizi: Faktor Pendukung Peningkatan.

Wei, W.W.S. 2009. Time Series Analysis: Univariat And Multivariat Methods. Second Edition. USA: Person Education,Inc.

Zaeir, I., Shu, C., Ouarda,T.B.M.J, Seidou, O., Chebana, F. 2010. Estimation of Ice Thickness on Lakes using Artificial Neural Network Ensembles. Journal Of Hidrology,383 ,330-340.




DOI: http://dx.doi.org/10.32528/justindo.v1i01.244

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

View My Stats

 

 INDEXING SERVICE