Uji Viabilitas dan Kemampuan Fungi Pelarut Fosfor pada Media Pembawa Dedak Padi selama Masa Penyimpanan

Desak Ketut Tristiana Sukmadewi, I Nengah Muliarta

Abstract


Mutu pupuk hayati sangat ditentukan berdasarkan proses formulasi menggunakan bahan pembawa yang tepat dengan mikrob yang digunakan. Bahan pembawa yang memiliki potensi besar untuk dikembangkan salah satunya adalah dedak padi. Tujuan penelitian ini adalah mengkaji potensi dedak padi sebagai bahan pembawa untuk menjaga viabilitas dan kemampuan fungi pelarut P selama masa penyimpanan. Tahapan dari penelitian ini terdiri dari persiapan bahan pembawa dedak padi, uji viabilitas fungi pelarut P pada bahan pembawa dedak padi dan pengujian kemampuan mikrob pelarut P selama masa penyimpanan. Dedak padi memiliki kadar air sebesar 9,1%, kadar abu 15,76%, kadar serat kasar 13,69%, kadar lemak 4,54%, kadar protein 8,29%, kadar karbohidrat 48,62%, kandungan karbon organik (C) 36,85%, Nitrogen (N) 1,82 %, C/N 20,2. Dedak padi memiliki potensi untuk menjaga viabilitas dan kemampuan dari fungi pelarut P. Bahan pembawa dedak padi mampu menjaga viabilitas fungi pelarut sampai minggu ke-12 dengan jumlah populasi akhir fungi pada media PDA sebesar log 6,55 (3,6 x 106 CFU/g) dan populasi akhir  fungi pada media Pikovskaya sebesar log 6,54 (3,53 x 106 CFU/g). Kemampuan fungi dalam melarutkan P cenderung fluktuaktif pada minggu ke-3 (192,01 ppm) sampai dengan minggu ke-6 (123,247 ppm) dan cenderung stabil pada minggu ke-9 (173,04 ppm) sampai dengan minggu ke-12 (165,69 ppm).


Keywords


Fosfor; Fungi; Dedak padi; Pupuk hayati; Viabilitas

References


Anas, I. (2016). Pentingnya Bioteknologi Tanah dalam Mencapai Sistem Pertanian yang Berkelanjutan (The Role of Soil Biotechnology in Achieving Sustainable Agriculture System). Bogor. Institut Pertanian Bogor

Bashan, Y. (1998). Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol.Adv., 16(4):729–770. https://doi.org/10.1016/S0734-9750(98)00003-2

Deaker, R., E. Hartley., Gemell, G. (2012). Conditions affecting shelf-life of inoculated legume seed. Agriculture., 2(1):38–51. https://doi.org/10.3390/agriculture2010038

Deaker, R., R.J. Roughley, I.R. Kennedy. (2004). Legume seed inoculation technology - A review. Soil Biol. Biochem., 36(8): 1275–1288. https://doi.org/10.1016/j.soilbio.2004.04.009.

Ginting, R.C.B., R. Saraswati, E. Husen. (2006). Mikroorganisme Pelaarut Fosfat . In R.D.M. Simanungkalit, D. A. Suriadikarta, R. Saraswati, D. Setyorini, W. Hartatik (Eds.), Pupuk Organik dan Pupuk Hayati Organik (pertama, pp. 141–158). Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian.

Herridge. (2008). Nitrogen Fixation: Origins, Applications, and Research Progress. In M. J. Dilworth, E. K. James, J.I. Sprent, William E. Newton (Eds.), Nitrogen-fixing Leguminous Symbioses. Springer Netherlands. https://doi.org/10.1007/978-1-4020-3548-7

Herrmann, L., D. Lesueur. (2013). Challenges of formulation and quality of biofertilizers for successful inoculation. Applied Microbiology and Biotechnology., 97(20): 8859–8873. https://doi.org/10.1007/s00253-013-5228-8.

Jayadi, M. (2013). In Vitro Selection of Rock Phosphate Solubility by Microorganism from Ultisols in South Sulawesi, Indonesia. Am.j.agric.for., 1(4):68-73. https://doi.org/10.11648/j.ajaf.20130104.14.

Khan, M.S., A. Zaidi, P.A. Wani. (2009). Role of Phosphate Solubilizing Microorganisms inSustainable Agriculture, in: Lichtfouse et al. (eds). Sustainable Agriculture. Media, New York: Springer Science Business. p 551-570.

Kim, K.Y., G.A. McDonald, D, Jordan. (1997). Solubilization of hydroxyapatite by Enterobacter agglomerans and cloned Escherichia coli in culture medium. Biol. Fertil. Soils., 24: 347–352.

Maftuah, E. M.M. Saleh, E. Pratiwi. (2020). The potentials of biochar from agricultural waste as a carrier material of biofertilizer for swamplands. IOP Conference Series: Materials Science and Engineering., 980(1):1-8. https://doi.org/10.1088/1757-899X/980/1/012064.

Malusá, E., L. Sas-Paszt, J. Ciesielska. (2012). Technologies for beneficial microorganisms inocula used as biofertilizers. The Scientific World Journal., 1–12. https://doi.org/10.1100/2012/491206.

Mukhtar, S., I. Shahid, S. Mehnaz, K.A. Malik. (2017). Assessment of two carrier materials for phosphate solubilizing biofertilizers and their effect on growth of wheat (Triticum aestivum L.). Microbiol Res., 205:107–117. https://doi.org/10.1016/j.micres.2017.08.011

Panjaitan, F.J., S. Wiyono, R. Widyastuti. (2019). Seleksi Komposisi Medium Pertumbuhan dan Bahan Pembawa untuk Formulasi Cendawan Agens Hayati Fusarium oxysporum Non-Patogenik P21a. Jurnal Fitopatologi Indonesia., 15(2):44–52. https://doi.org/10.14692/jfi.15.2.44-52.

Phiromtan, M., T. Mala, P. Srinives. (2013). Effect of various carriers and storage temperatures on survival of Azotobacter vinelandii NDD-CK-1 in powder inoculant. Mod. Appl. Sci., 7(6):81–89. https://doi.org/10.5539/mas.v7n6p81

Putri, S.M., I. Anas, F. Hazra, A. Citraresmini. (2010). Viabilitas Inokulan dalam Bahan Pembawa Gambut, Kompos, Arang Batok dan Zeolit yang Disteril dengan Iradiasi Sinar Gamma Co-60 Dan Mesin Berkas Elektron. JITL., 12(1): 23-30. https://doi.org/10.29244/jitl.12.1.23-30.

Rodríguez, H., R. Fraga. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv., 17:319–339. doi: 10.1016/s0734-9750(99)00014-2.

Sharma, S.B., R.Z. Sayyed, M.H. Trivedi, T.A. Gobi. (2013). Phosphate solubilizing microbe: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus., 2 (587): 1-14. doi: 10.1186/2193-1801-2-587.

Stephens, J.H.G., H.M. Rask. (2000). Inoculant production and formulation. Field Crops Res., 65(2–3):249–258. https://doi.org/10.1016/S0378-4290(99)00090-8.

Sukmadewi, D.K.T., I. Anas, R. Widyastuti, S. Anwar. (2020). The Viability of Phosphorus and Potassium Solubilizer Multifunctional Microbes in Peat and Rice Husk Charcoal Carrier Materials that Sterilization Using Gamma Irradiation. International Conference on Nuclear Science, Technology, and Application (ICONSTA)., 1: 19–24.

Sukmadewi D.K.T., I, Anas, R. Widyastuti, S. Anwar, A. Citraresmini. (2021). The effectiveness of application of phosphorous and potassium solubilizing multifunctional microbes (Aspergillus costaricaensis and Staphylococcus pasteuri mutants) on maize growth. J. Degrade. Min. Land Manage., 8(2):2681–2688. https://doi.org/10.15243/jdmlm.2021.082.2681.

Xavier, I.J., G, Holloway, M. Leggett. (2004). Development of Rhizobial Inoculant Formulations. Crop Management., 3(1):1–6. https://doi.org/10.1094/cm-2004-0301-06-rv.

Whitelaw, M.A. (2000). Growth promotion of plant inoculated with phosphate solubilizing fungi. Adv Agron., 69:99-147. doi: 10.1016/s0065-2113(08).

Yunardi, Y., H, Meilina, U. Fathanah, R, Mahadina, A, Rinaldi, J. Jauharlina. (2019). Potential of edible oil production from rice bran in Indonesia: A Review. IOP Conference Series: Materials Science and Engineering., 845(1):1–6. https://doi.org/10.1088/1757-899X/845/1/012030.

Zhu, F., L, Qu, X. Hong, X.Sun. (2011). Isolation and Characterization of a Phosphate-Solubilizing Halophilic Bacterium Kushneriasp. YCWA18 from Daqiao Saltern on the Coast of Yellow Sea of China. Evid. Based Complementary Altern., 2011:1-6. DOI: 10.1155/2011/615032.




DOI: https://doi.org/10.32528/agritrop.v21i2.20955

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Desak Ketut Tristiana Sukmadewi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

Address:

Jl. Karimata No. 49 Jember-Jawa Timur-Indonesia

Phone & Fax:

(0331)336728 | 337957

Email:

agritrop-faperta@unmuhjember.ac.id

 

View My Stats
slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor