SUBMODUL PRIMA, SEMIPRIMA, DAN PRIMER DI MODUL DAN MODUL FRAKSI

Lina Dwi Khusnawati FKIP Universitas Muhammadiyah Surakarta lina.d.khusnawati@ums.ac.id

Abstrak

Diberikan ring komutatif R dengan elemen satuan dan R-modul M. Submodul sejati A di M disebut submodul prima jika untuk setiap $m \in M$ dan $r \in R$ dengan $rm \in A$ berakibat $m \in A$ atau $r \in (A:M)$. Dari definisi submodul prima, jika $rm \in A$ diperumum menjadi $r^tm \in A$ untuk suatu $t \in \mathbb{N}$ maka akan memunculkan definisi submodul semiprima. Sedangkan jika $r \in (A:M)$ diperumum menjadi $r^n \in (A:M)$ untuk suatu $n \in \mathbb{N}$ maka akan memunculkan definisi submodul primer. Pada artikel ini, akan dibahas korespondensi antara submodul prima, semiprima, dan primer di R-modul M serta korespondensi submodul prima dan primer di R-modul M dengan di R_S -modul M_S .

Kata Kunci: Submodul prima, semiprima, primer, modul fraksi

Abstract

Let R be a commutative ring with unity and M an unitary R-module. A proper submodule A of M is said to be a prime submodule of M if $rm \in A$ for $m \in M$ and $r \in R$ implies that either $m \in A$ or $r \in (A:M)$. The generalization of prime submodule made the definition of semiprime and primary submodule. In this article, the relations between prime, semiprime, and primary submodule, and also the relations between prime and primary submodule in R-module M and R_S -module M_S , are investigated.

Keywords: Prime, semiprime, primary submodule, module of fractions

PENDAHULUAN

Pada teori ring telah dikenal konsep ideal prima. Ideal sejati I di R disebut ideal prima apabila untuk setiap $a,b \in R$ dengan $ab \in I$ berakibat $a \in I$ atau $b \in I$. Karena $I \subseteq Ann_R(R/I)$ maka diperoleh bahwa untuk setiap $a,b \in R$ dengan $ab \in I$ berakibat $a \in Ann_R(R/I)$ atau $b \in I$. Jika R dipandang sebagai modul atas dirinya sendiri maka diperoleh pendefinisian submodul prima di R-modul R. Konsep tersebut melatarbelakangi pendefinisian submodul prima di sebarang R-modul R. Submodul sejati R di R-modul R disebut submodul prima apabila untuk setiap R dengan R denga

Lebih lanjut, generalisasi dari pendefinisian submodul prima di *R*-modul *M* memotivasi munculnya definisi submodul semiprima dan submodul primer di *R*-modul *M*. Paper Dauns [2] telah menjelaskan banyak hal terkait submodul prima. Sedangkan generalisasinya, yaitu submodul semiprima dibahas di paper Tavallaee dan Varmazyar [5]. Adapun submodul primer dibahas oleh Northcott [4] pada bukunya. Pada bagian pertama artikel ini akan mengulas ketiga submodul tersebut. Akan diberikan pula contoh, baik yang memenuhi definisi setiap submodul maupun yang tidak. Selain itu, korespondensi antara ketiga submodul juga diberikan.

Pada R-modul M, untuk setiap himpunan multiplikatif $S \subset R$, dapat dibentuk modul fraksi R_S -modul M_S . Pada bagian kedua artikel ini, akan dibahas korespondensi antara submodul prima di R-modul M dan di R_S -modul M_S serta

korespondensi antara submodul primer di kedua modul tersebut. Bagian ini akan menggunakan paper Lu [3] sebagai paper utama.

METODE

Metode yang digunakan adalah studi literatur.

HASIL DAN PEMBAHASAN

1. Submodul Prima, Semiprima, dan Primer

Pada bagian ini akan dibahas submodul prima dan generalisasi dari submodul prima, yaitu submodul semiprima dan submodul primer. Terlebih dahulu ditunjukkan bahwa

$$Ann_R(M/A) = \{r \in R | rM \subseteq A\} = (A:M)$$

1.1. Submodul Prima

Definisi 1.1.1 [2] Diberikan R-modul M dan submodul sejati A di M. Submodul A disebut submodul prima di M apabila untuk setiap $m \in M$ dan $r \in R$ dengan $rm \in A$ berakibat $m \in A$ atau $r \in (A:M)$.

Contoh 1.1.1 Diberikan sebarang bilangan prima p. Submodul $p\mathbb{Z}$ di \mathbb{Z} -modul \mathbb{Z} merupakan submodul prima.

Proposisi 1.1.2 [2] Diberikan R-modul M dan submodul sejati A di M. Jika A merupakan submodul prima di M maka (A:M) merupakan ideal prima di R. **Bukti.** Diambil sebarang ideal I dan J di R dengan $IJ \subseteq (A:M)$. Karena $IJ \subseteq (A:M)$ maka $IJM = I(JM) \subseteq A$. Karena A submodul prima maka $JM \subseteq A$ atau $I \subseteq (A:M)$. Dengan demikian, terbukti bahwa $J \subseteq (A:M)$ atau $I \subseteq (A:M)$. Terbukti (A:M) ideal prima.

Contoh 1.1.2 Diberikan himpunan semua bilangan rasional $\mathbb Q$ sebagai $\mathbb Z$ -modul. Akan ditunjukkan bahwa $\{0\}$ merupakan satu-satunya submodul prima di $\mathbb Q$. Misalkan A submodul prima di $\mathbb Q$ maka $P = (A:\mathbb Q)$ ideal prima di $\mathbb Z$ sehingga $p\mathbb Q \subseteq A$. Karena $A \neq \mathbb Q$ maka $P = \{0\}$. Andaikan $A \neq \{0\}$ maka terdapat $a,b \in \mathbb Z \setminus \{0\}$ sehingga $ab^{-1} \in A$. Karena A submodul prima maka $b^{-1} \in A$ sehingga $a\beta^{-1} \notin A$. Lebih lanjut, $\beta\alpha\beta^{-1} = \alpha \in A$. Karena A submodul prima maka $\beta \in P = (A:\mathbb Q)$ sehingga $\beta = 0$. Kontradiksi dengan $\beta \neq 0$. Terbukti bahwa $\{0\}$ merupakan satu-satunya submodul prima di $\mathbb Q$.

1.2. Submodul Semiprima

Pada submodul prima, perhatikan bahwa pada $rm \in A$ hanya melibatkan $r^1m \in A$ dengan $1 \in \mathbb{N}$. Jika diperumum menjadi $t \in \mathbb{N}$ sehingga $r^t \in A$ maka didefinisikan submodul semiprima.

Definisi 1.2.1 [5] Submodul sejati A di R-modul M disebut semiprima jika untuk setiap ideal I di R dan untuk setiap submodul K di M dengan $I^2K \subseteq A$ berakibat $IK \subseteq A$.

Teorema 1.2.2 (Tavallaee dan Varmazyar, 2008) *Misalkan A submodul sejati di R-modul M. Pernyataan berikut ekuivalen*.

- 1. A submodul semiprima
- 2. Jika $r^t m \in A$ untuk suatu $r \in R$, $m \in M$, $t \in \mathbb{N}$ maka $rm \in A$.

Bukti. $I \Rightarrow 2$ Diketahui A submodul semiprima. Misalkan $r^t m \in A$ untuk suatu $r \in R, m \in M, t \in \mathbb{N}$. Dipilih $I = \langle r \rangle$ dan $K = \langle m \rangle$. Diperoleh $I^t K \subseteq A$ sehingga $IK \subseteq A$. Akibatnya, $rm \in A$.

 $2\Rightarrow I$ Diketahui $r^tm\in A$ untuk suatu $r\in R, m\in M, t\in \mathbb{N}$ yang berakibat $rm\in A$. Diambil I ideal di R dan K submodul di M dengan $I^2K\subseteq A$. Dibentuk $S=\{ra|r\in I, a\in K\}$ sehingga untuk setiap $r\in I, a\in K$ berlaku $r^2a\in I^2K\subseteq A$. Diperoleh $ra\in A$ sehingga berakibat $S\subseteq A$. Karena IK submodul di M yang dibangun oleh S maka diperoleh $IK\subseteq A$. Terbukti A semiprima.

Contoh 1.2.1 Submodul $\{\overline{0}\}$ di \mathbb{Z} -modul \mathbb{Z}_3 merupakan submodul semiprima karena jika $z \in \mathbb{Z}, \overline{m} \in \mathbb{Z}_3$ dengan $z^t \overline{m} = \overline{0}$ untuk suatu $t \in \mathbb{N}$ maka $\overline{z^t m} = \overline{0}$. Akibatnya, $3|z^t m$ sehingga 3|z atau $3|z^{t-1}m$. Proses dilanjutkan sehingga diperoleh 3|z atau 3|zm. Dengan demikian diperoleh $\overline{zm} = \overline{0}$. Di lain pihak, submodul $\{\overline{0}\}$ di \mathbb{Z} -modul \mathbb{Z}_4 bukan merupakan submodul semiprima karena terdapat $2 \in \mathbb{Z}, \overline{1} \in \mathbb{Z}_4$ dan $2 \in \mathbb{N}$ sedemikian hingga $2^2 \cdot \overline{1} = 4 \cdot \overline{1} = \overline{0}$ namun $2 \cdot \overline{1} = \overline{2} \neq \overline{0}$.

Contoh 1.2.2 Submodul $6\mathbb{Z}$ di \mathbb{Z} -modul \mathbb{Z} merupakan submodul semiprima. Diambil sebarang $r \in \mathbb{Z}, m \in \mathbb{Z}$ dengan $r^t m \in 6\mathbb{Z}$. Karena $r^t m \in 6\mathbb{Z}$ maka terdapat $z \in \mathbb{Z}$ sehingga $r^t m = 6z$. Perhatikan bahwa $r^t m = 6z = (2 \cdot 3)z = 2 \cdot (3z) = 3 \cdot (2z)$ sehingga $2|r^t m$ dan $3|r^t m$. Karena $r^t m = rr^{t-1}m = rmr^{t-1}$ maka $2|rmr^{t-1}$ sehingga 2|rm atau $2|r^{t-1}$. Andaikan $2\nmid rm$ sehingga $2|r^{t-1}$. Karena $2\nmid rm$ maka $2\nmid r$ dan $2\nmid m$. Padahal, karena $2|r^{t-1}$ maka 2|r. Kontradiksi sehingga pengandaian ditolak. Diperoleh 2|rm. Dengan cara yang sama, diperoleh 3|rm. Karena 2|rm, 3|rm, dan kPK(2,3) = 6 maka 6|rm. Karena itu, terdapat $y \in \mathbb{Z}$ sehingga $rm = 6y \in 6\mathbb{Z}$.

Contoh 1.2.3 Diberikan $R = \mathbb{Z}$ dan $M = \mathbb{Z} \oplus \mathbb{Z} = \{(x,y)|x,y \in \mathbb{Z}\}$. Submodul $B = \langle (9,0) \rangle$ bukan merupakan submodul semiprima karena terdapat ideal $I = \langle 3 \rangle$ dan submodul $K = \langle (2,0) \rangle$ sehingga $I^2K = \langle (18q,0)|q \in \mathbb{Z} \rangle \subseteq B$ namun $K = \{(6p,0)|p \in \mathbb{Z}\} \nsubseteq B$.

Proposisi 1.2.3 [5] *Diberikan R-modul M.*

- 1. Jika A submodul prima di M maka A submodul semiprima
- 2. Jika A submodul semiprima di M maka (A: M) ideal semiprima di R.

Bukti.

1. Misalkan I ideal di R dan K submodul di M dengan $I^2K \subseteq A$. Diperoleh $I(IK) \subseteq A$. Karena A prima maka $I \subseteq (A:M)$ atau $IK \subseteq A$. Namun, $(A:M) \subseteq (A:K)$ sehingga $I \subseteq (A:K)$. Diperoleh $IK \subseteq A$.

2. Diambil sebarang J ideal di R dengan $J^2 \subseteq (A:M)$ sehingga $J^2M \subseteq A$. Karena M submodul di M dan A semiprima maka $JM \subseteq A$ sehingga $J \subseteq (A:M)$. Diperoleh (A:M) ideal semiprima.

Contoh 1.2.4 Submodul $6\mathbb{Z}$ di \mathbb{Z} -modul \mathbb{Z} merupakan submodul semiprima (Contoh 1.2.2) namun bukan merupakan submodul prima. Hal tersebut dikarenakan terdapat $2 \in \mathbb{Z}$ dan $3 \in \mathbb{Z}$ dengan $2 \cdot 3 = 6 \in \mathbb{Z}$ namun $2\mathbb{Z} \nsubseteq 6\mathbb{Z}$ dan $3\mathbb{Z} \nsubseteq 6\mathbb{Z}$

Contoh 1.2.5 Diberikan $R = \mathbb{Z}$ dan $M = \mathbb{Z} \oplus \mathbb{Z} = \{(x, y) | x, y \in \mathbb{Z}\}$. Diambil submodul $B = \langle (9,0) \rangle$. Diperoleh

```
(B:M) = \{z \in R | zM \subseteq B\}
= \{z \in R | z(x,y) \in R(9,0), \forall (x,y) \in M\}
= \{z \in R | z(x,y) = r(9,0), \forall (x,y) \in M, \exists r \in R\}
= \{z \in R | (zx,zy) = (r9,0), \forall (x,y) \in M, \exists r \in R\}
```

Untuk $r \in R \setminus 0$ diperoleh bahwa $z(x,y) \neq (r9,0) \forall z \in R, (x,y) \in M$. Untuk $r = 0 \in R$ terdapat $z = 0 \in R$ sehingga $z(x,y) = 0(x,y) = (0,0) = (0 \cdot 9,0)$. Diperoleh $(B:M) = \{0\}$. Karena \mathbb{Z} daerah integral maka $\{0\}$ ideal semiprima di \mathbb{Z} . Akan tetapi, submodul $B = \langle (9,0) \rangle$ bukan submodul semiprima (Contoh 1.2.3).

1.3. Submodul Primer

Pada definisi submodul prima, perhatikan bahwa pada $r \in (A:M)$ hanya melibatkan r^1 dengan $1 \in \mathbb{N}$. Jika diperumum menjadi $n \in \mathbb{N}$ sehingga $r^n \in (A:M)$ maka didefinisikan submodul primer sebagai berikut.

Definisi 1.3.1 [4] Submodul sejati A di R-modul M disebut submodul primer jika untuk sebarang $r \in R$ dan $m \in M$ dengan $rm \in A$ berakibat $m \in A$ atau $r^n \in (A:M)$ untuk suatu $n \in \mathbb{N}$.

Pada kasus R dipandang sebagai modul atas dirinya sendiri maka M = R dan A = P ideal di R sehingga $r^n \in (P:R)$ jika dan hanya jika $r^n \in P$. Dengan demikian, dipahami definisi ideal primer berikut.

Definisi 1.3.2 [4] Ideal sejati P di R disebut ideal primer jika untuk sebarang $r, r' \in R$ dengan $rr' \in P$ berakibat $r' \in P$ atau $r^n \in P$ untuk suatu $n \in \mathbb{N}$.

Pada konsep submodul prima, jika A adalah submodul prima di R-modul M maka P = (A: M) merupakan ideal prima di R dan A disebut sebagai P-prima.

Pada konsep submodul primer, akan ditunjukkan bahwa jika A submodul primer di R-modul M maka (A:M) merupakan ideal primer di R.

Proposisi 1.3.3 Diberikan R-modul M. Jika A submodul primer di R-modul M maka (A: M) merupakan ideal primer di R.

Bukti. Diambil sebarang r, r' dengan $rr' \in (A:M)$. Karena $rr' \in (A:M)$ maka $(rr')M \subseteq A$ sehingga $r(r'M) \subseteq A$. Karena A merupakan submodul primer maka diperoleh $r'M \subseteq A$ atau $r^n \in (A:M)$ untuk suatu $n \in \mathbb{N}$. Dengan demikian, diperoleh jika $rr' \in (A:M)$ maka $r' \in (A:M)$ atau $r^n \in (A:M)$. Terbukti bahwa (A:M) ideal primer di R.

Proposisi berikut menunjukkan bahwa $P = \sqrt{(A:M)}$ merupakan ideal prima di R. Selanjutnya, submodul A disebut sebagai P-primer.

Proposisi 1.3.4 [4] Radikal dari ideal primer merupakan ideal prima

Bukti. Misalkan I adalah ideal primer dan $P = \sqrt{I}$. Jelas, P merupakan ideal sejati di R. Selanjutnya, diambil sebarang $a, b \in R, b \notin P$ dengan $ab \in P$. Terdapat $m \in \mathbb{N}$ sehingga

$$(ab)^m = a^m b^m \in I$$

Karena $b \notin P$ maka $(b^m)^n \notin I$ untuk setiap $n \in \mathbb{N}$. Karena I ideal primer maka $a^m \in I$. Diperoleh $a \in \sqrt{I} = P$. Terbukti P ideal prima .

Contoh 1.3.1 Diberikan sebarang bilangan prima p dan $k \in \mathbb{N}$. Akan ditunjukkan bahwa ideal $p^k\mathbb{Z}$ di ring \mathbb{Z} merupakan ideal primer. Diambil sebarang $r \in \mathbb{Z}$, $t \in \mathbb{Z} \setminus p^k\mathbb{Z}$ dengan $t \in p^k\mathbb{Z}$. Karena $rt \in p^k\mathbb{Z}$ maka $rt = sp^k = sp^{k-1}p$ untuk suatu $s \in \mathbb{Z}$ sehingga p|rt. Karena p prima dan $t \notin p^k\mathbb{Z}$ maka $p \nmid t$ sehingga p|r. Diperoleh r = py untuk suatu $y \in \mathbb{Z}$ sehingga $r^k = (py)^k = p^ky^k$. Dengan demikian, diperoleh $p^k|r^k$ sehingga $r^k \in p^k\mathbb{Z}$. Terbukti bahwa $p^k\mathbb{Z}$ merupakan ideal primer. Jika ring \mathbb{Z} dipandang sebagai modul atas dirinya sendiri maka $p^k\mathbb{Z}$ merupakan submodul primer.

Contoh 1.3.2 Sesuai contoh 1.3.1 jika dipilih p = 3 maka $3^2\mathbb{Z} = 9\mathbb{Z}$ merupakan submodul primer di \mathbb{Z} -modul \mathbb{Z} . Namun, $9\mathbb{Z}$ bukan merupakan submodul prima di \mathbb{Z} karena terdapat $3 \in \mathbb{Z}$ sehingga $3 \cdot 3 \in 9\mathbb{Z}$ namun $3\mathbb{Z} \nsubseteq 9\mathbb{Z}$ dan $3 \notin 9\mathbb{Z}$.

Proposisi 1.3.5 [4] Misalkan A submodul P-primer di R-modul M. Jika $rm \in A$, dengan $r \in A$, $m \in M$ maka $r \in P$ atau $m \in A$.

Bukti. Andaikan $m \notin A$. Akan dibuktikan $r \in P$. Karena $m \notin A$ dan A submodul primer maka $r^n \in (A:M)$ untuk suatu $n \in \mathbb{N}$ sehingga $r \in \sqrt{(A:M)} = P$.

Seperti halnya submodul semiprima, jika submodul *A* merupakan submodul prima maka *A* merupakan submodul primer. Konvers sifat tersebut berlaku jika submodul *A* merupakan submodul semiprima dan primer sekaligus.

Proposisi 1.3.6 Submodul sejati *A* merupakan submodul prima jika dan hanya jika *A* semiprima dan primer.

2. Submodul Prima dan Primer di Modul Fraksi

Diberikan R-modul M dan submodul N serta himpunan multiplikatif $S \subset R$. Modul fraksi N_S disebut sebagai ekstensi dari N di M_S yang merupakan himpunan anggota M_S yang dapat ditulis dalam bentuk $\frac{n}{s} \in M_S$ dengan $n \in N$ dan $s \in S$. Jika terdapat homomorfisma R-modul dari N ke M maka dapat ditemukan homomorfisma R_S -modul dari N_S ke M_S . Perhatikan bahwa $f_S \colon N_S \to M_S$ merupakan monomorfisma sehingga $N_S \simeq f_S(N_S)$. Karena $f_S(N_S)$ merupakan submodul di M_S maka N_S dapat dipandang sebagai submodul di M_S . Lebih lanjut, terdapat isomorfisma R_S -modul dari M_S/N_S ke $(M/N)_S$ sehingga ditulis $M_S/N_S \simeq (M/N)_S$.

Selanjutnya, diberikan homomorfisma

$$\chi_M \colon M \to M_S$$

$$m \mapsto \frac{sm}{s}$$

Jika dimiliki submodul W di R_S -modul M_S , maka diperoleh $\chi_M^{-1}(W)$ submodul di R-modul M. Submodul $\chi_M^{-1}(W)$ tersebut kemudian disebut kontraksi dari submodul W di M

Proposisi 2.1 [4] Diberikan R-modul M, X submodul di M dan X_S dipandang sebagai submodul di M_S . Kontraksi dari X_S di M adalah X^S , yaitu S-komponen dari submodul X di M, dan ditulis $\chi_M^{-1}(X) = X^S$.

Bukti. Diambil sebarang $a \in X^S$, maka terdapat $s \in S$ sedemikian hingga $sa \in X$. Karena

$$\chi_M: M \to M_S$$

$$m \mapsto \frac{sm}{s}$$

maka diperoleh $\chi_M(a) = \frac{sa}{s} \in X_S$ sehingga $a \in \chi_M^{-1}$.

Sebaliknya, diambil sebarang $a \in \chi_M^{-1}(X)$. Berarti, $a \in M$ dengan $\chi_M(a) \in X_S$. Diperoleh suatu $\delta \in S$ dan $x \in X$ sedemikian hingga $\frac{x}{\delta} = \frac{\delta a}{\delta}$. Akibatnya, terdapat $s' \in S$ sehingga

$$s'(\delta^2 a - \delta x) = 0$$

$$s'\delta^2 a - s'\delta x = 0$$

$$s'\delta^2 a = s'\delta x \in X$$

Karena $s'\delta^2 \in S$ maka $a \in X^S$.

Proposisi 2.2 [4] Misalkan W submodul di R_S -modul M_S dan W^c merupakan kontraksi dari W di M. Ekstensi dari W^c di M_S adalah W yang selanjutnya ditulis $(W^c)_S = W$.

Bukti. Akan dibuktikan $(W^c)_S \subseteq W$. Karena W^c merupakan kontraksi dari W di M maka $W^c = \chi_M^{-1}(W)$. Diambil sebarang $\frac{u}{s} \in (W^c)_S = (\chi_M^{-1}(W))_S$ dengan $s \in S$. Diperoleh $u \in \chi_M^{-1}(W)$ sehingga $\chi_M(u) \in W$. Diperoleh

$$\frac{u}{s} = \frac{1}{s} \cdot \frac{su}{s} = \frac{1}{s} \chi_M(u) \in W$$

sehingga diperoleh $(W^c)_S \subseteq W$.

Akan dibuktikan $W \subseteq (W^c)_S$. Diambil sebarang $\frac{u}{s} \in W$ dengan $u \in M, s \in S$. Akan ditunjukkan bahwa $\frac{u}{s} \in (W^c)_S$. Diperoleh

$$\frac{s^2}{s} \cdot \frac{u}{s} = \frac{su}{s} = \chi_M(u) \in W$$

sehingga $u \in \chi_M^{-1}(W) = W^c$. Dengan demikian, $\frac{u}{s} \in (W^c)_S$ sehingga $(W^c)_S$.

Selanjutnya akan dibahas terkait korespondensi submodul primer dan submodul prima di R-modul M dan di R_S -modul M_S

Proposisi 2.3 [4] Diberikan K submodul P-primer di M dan S himpunan multiplikatif di R. Jika $P \cap S \neq \emptyset$ maka $K_S = M_S$. Di lain pihak, jika $P \cap S = \emptyset$ maka K_S merupakan submodul P_S -primer di M_S dan kontraksi dari K_S di M adalah K.

Bukti. Akan dibuktikan kondisi pertama terlebih dahulu, yaitu jika $P \cap S \neq \emptyset$. Karena $P \cap S \neq \emptyset$ maka $\exists s \in P, s \in S$. Karena $P = \sqrt{(K:M)}$ maka terdapat $n \in \mathbb{N}$ sedemikian hingga $s^n = r \in (K:M)$. Dengan demikian, $rM \subseteq K$. Kemudian, diambil sebarang $m \in M$ dan $s' \in S$ maka $\frac{m}{s} = \frac{rm}{rs'} \in K_S$. Hal ini berarti $M_S = K_S$. Selanjutnya akan dibuktikan kondisi kedua, yaitu jika $P \cap S = \emptyset$. Misalkan m anggota dari kontraksi K_S di M maka menurut Proposisi 3.1 diperoleh $m \in K^S$ sehingga terdapat $s \in S$ dengan $sm \in K$. Karena K adalah submodul P-primer di M dan $s \notin P$ maka menurut Proposisi 1.3.5 diperoleh $m \in K$. Sehingga terbukti bahwa anggota kontraksi dari K_S di M adalah K. Selanjutnya, akan ditunjukkan bahwa K_S adalah submodul P_S -primer.

Misalkan $\frac{r}{s}\frac{m}{\delta} \in K_S$ dengan $\frac{m}{\delta} \notin K_S$. Akan dibuktikan bahwa $\left(\frac{r}{s}\right)^n \in (K_S: M_S)$. Karena $\frac{m}{\delta} \notin K_S$ maka $m \notin K$. Jika $\frac{rm}{s\delta}$ dikalikan dengan $\frac{s^2\delta^2}{s\delta}$ maka diperoleh $\frac{s^2\delta^2rm}{s^2\delta^2} \in K_S$ sehingga rm anggota kontraksi dari K_S , yaitu $rm \in K$. Karena K submodul primer dan $m \notin K$ maka $r^nM \subseteq K$ untuk suatu $n \in \mathbb{N}$. Berakibat $\left(\frac{r}{s}\right)^n M_S \subseteq K_S$. Akibatnya, K_S submodul P_S' -primer di M_S untuk suatu ideal prima P' di M.

Akan ditunjukkan bahwa P' = P. Diambil sebarang $p \in P$. Karena $P = \sqrt{K:M}$ maka $p^v M \subseteq K$ untuk suatu $v \in \mathbb{N}$. Jika $s \in S$ maka $\left(\frac{sp}{s}\right)^v M_S \subseteq K_S$. Akibatnya, $\frac{sp}{s} \in P_S'$ sehingga p anggota kontraksi dari P_S' di R, yaitu P'. Diperoleh $P \subseteq P'$.

Sebaliknya, misalkan $p' \in P'$. Karena $P'_S = \sqrt{(K_S: M_S)}$ maka untuk $\delta \in S$, $\left(\frac{\delta p'}{s}\right)^v M_S \subseteq K_S$ untuk suatu v. Dipilih $m \in M$ dengan $m \notin K$. Diperoleh

$$\frac{\delta^{v+1}p'^vm}{\delta^{v+1}} = \left(\frac{\delta p'}{\delta}\right)^v \frac{\delta m}{\delta} \in K_S$$

Sehingga $p'^v m$ anggota kontraksi dari K_S yaitu K. Karena $p'm \in K$ dan $m \notin K$ maka menurut Proposisi 1.3.5 diperoleh $p' \in P$. Dengan demikian, $P' \subseteq P$.

Proposisi 2.3 menunjukkan bahwa jika $P \cap S = \emptyset$ maka ekstensi dari submodul P-primer K merupakan submodul P_S -primer di M_S yang jika dikontraksikan akan kembali menjadi submodul P-primer K itu sendiri. Jika diambil sebarang submodul P_S -primer W di M_S , dapat ditunjukkan bahwa kontraksi dari submodul P_S -primer tersebut merupakan submodul P-primer di M yang jika diekstensikan akan kembali menjadi submodul P_S -primer W itu sendiri. Secara sederhana, kejadian tersebut dinyatakan sebagai korespondensi satu-satu antara submodul Pprimer K di M dengan submodul P_S -primer W di M_S seperti tercantum dalam teorema berikut:

Teorema 2.4 [4] Diberikan P ideal prima di R dan S himpunan multiplikatif di R dengan $P \cap S = \emptyset$. Jika M R-modul maka terdapat korespondensi satu-satu antara submodul P-primer K di M dengan submodul P_S-primer W di M_S. Hal ini berarti, $W = K_S$ dan kontraksi dari W di M adalah K.

Bukti. Diambil W submodul P_S -primer di M_S . Dari Proposisi 2.1 maka hanya perlu ditunjukkan bahwa W adalah ekstensi dari suatu submodul P-primer di M. Misalkan K adalah kontraksi dari W di M. Dari Proposisi 2.2, $K_S = W$ sehingga K adalah submodul sejati di M. Akan ditunjukkan K submodul primer. Misalkan $rm \in K$, dengan $r \in R$, $m \in M$, $m \notin K$. Untuk $s \in S$, berlaku

$$\frac{sr}{s}\frac{sm}{s} = \frac{s^2rm}{s^2} \in K_S = W$$

 $\frac{sr}{s}\frac{sm}{s}=\frac{s^2rm}{s^2}\in K_S=W$ Di lain pihak, karena $m\not\in K$ maka $\frac{sm}{s}\not\in K_S=W$

Karena W primer maka terdapat $n \in \mathbb{N}$ sehingga $\left(\frac{sr}{s}\right)^n M_S \subseteq W$. Untuk setiap $m' \in M$, diperoleh

$$\frac{s^{n+1}r^nm'}{s^{n+1}} = \left(\frac{sr}{s}\right)^n \frac{sm'}{s} \in W$$

Berakibat $r^n m' \in K$ sehingga $r^n M \subseteq K$. Terbukti K primer.

Misalkan K submodul P'-primer. Karena $K_S = W$ dan $W \neq M_S$, Proposisi 2.1 menunjukkan bahwa jika $P' \cap S = \emptyset$ maka $K_S = W$ merupakan submodul P'_S primer. Karena $P'_S = P_S$ maka P' = P.

Korespondensi tersebut dalam paper Lu [3] dinyatakan sebagai $K_S = W$ dan $K = W \cap M$.

Mengingat bahwa setiap submodul prima merupakan submodul primer, maka akan diselidiki apakah terdapat korespondesi yang serupa antara submodul prima di M dan submodul prima di M_S . Sebelumnya, akan diselidiki syarat perlu dan cukup submodul primer merupakan submodul prima.

Proposisi 2.3 [3] Diketahui A submodul primer di M. Submodul A merupakan submodul prima jika dan hanya jika (A: M) ideal prima.

Bukti. Diketahui *A* submodul primer.

 \Rightarrow Diketahui A submodul prima, maka jelas (A: M) ideal prima.

 \Leftarrow Diketahui (A:M) ideal prima. Diambil sebarang $r \in R, m \in M \setminus A$ dengan $rm \in A$. Akan ditunjukkan bahwa $rm \subseteq A$.

Karena A submodul primer maka $r^n \in (A:M)$. Perhatikan bahwa $r^n = r \cdot r^{n-1} \in (A:M)$. Karena (A:M) ideal prima maka $r \in (A:M)$ atau $r^{n-1} \in (A:M)$. Andaikan $r \notin (A:M)$ maka $r^{n-1} \in (A:M)$. Perhatikan bahwa $r^{n-1} = r \cdot r^{n-2} \in (A:M)$. Karena (A:M) ideal prima maka $r \in (A:M)$ atau $r^{n-2} \in (A:M)$. Karena $r \notin (A:M)$ maka $r^{n-2} \in (A:M)$. Proses dilanjutkan hingga diperoleh $r \cdot r \in (A:M)$ sehingga diperoleh $r \in (A:M)$. Kontradiksi dengan pengandaian sehingga $r \in (A:M)$. Diperoleh, $rM \subseteq A$.

Proposisi 2.4 [3] Diberikan K submodul P-primer. Ideal (K:M) merupakan ideal prima jika dan hanya jika $(K_S:M_S)$ ideal prima.

Bukti. Diketahui dari korespondensi submodul primer bahwa K submodul Pprimer jika dan hanya jika K_S submodul P_S -primer, dengan $P = \sqrt{(K:M)}$ ideal
prima dan $P_S = \sqrt{K_S:M_S}$ ideal prima.

 \Rightarrow Jika (K:M) ideal prima maka K submodul P-prima sehingga P=(K:M). Diperoleh

$$P_S = (K:M)_S \subseteq (K_S:M_S) \subseteq \sqrt{(K_S:M_S)} = P_S$$

 \Leftarrow Jika $(K_S: M_S)$ ideal prima maka K_S submodul P_S -prima sehingga $P_S = (K_S: M_S)$. Diperoleh $P_S M_S \subseteq K_S$ sehingga untuk setiap $x \in P, m \in M, s, t \in S$ berlaku $\frac{x}{x} \frac{m}{t} \in K_S$.

Karena $\left(\frac{s^2t^2}{st}\right)\left(\frac{xm}{st}\right) = \frac{s^2t^2xm}{s^2t^2} \in K_S$ maka untuk setiap $m \in M, xm \in K$. Akibatnya, $x \in (K:M)$. Dengan demikian, diperoleh $(K:M) = \sqrt{(K:M)} = P$.

Jika K submodul P-prima maka terdapat dua buah kondisi yang pasti terjadi, yaitu P = (K: M) ideal prima dan K submodul P-primer. Dari korespondensi yang diperoleh pada Teorema 2.4, karena K submodul P-primer maka K_S submodul P_S -primer. Sedangkan dari Proposisi 2.5, karena (K: M) ideal prima diperoleh $(K_S: M_S)$ ideal prima. Karena K_S submodul primer dan $(K_S: M_S)$ ideal prima maka diperoleh K_S submodul K_S -prima.

Sebaliknya, jika W submodul P_S -prima maka terdapat 2 buah kondisi, yaitu $P_S = (W: M_S)$ prima dan W submodul P_S -primer. Dari korespondensi pada Teorema 2.4 diperoleh kontraksi dari W, katakan K, merupakan submodul P-primer dengan $P = \sqrt{(K:M)}$ dan $K_S = W$ sehingga $P_S = (K_S: M_S)$. Sedangkan dari Proposisi 2.5, karena $(K_S: M_S)$ ideal prima maka diperoleh (K:M) ideal

prima. Karena K submodul P-primer dan (K:M) ideal prima maka K submodul P-prima. Dengan demikian, terdapat korespondensi antara submodul prima di M dengan submodul prima di M_S seperti tercantum dalam proposisi berikut:

Proposisi 2.5 [3] Diberikan P ideal prima di R dan S himpunan multiplikatif di R dengan $P \cap S = \emptyset$. Jika M R-modul maka terdapat korespondensi satu-satu antara submodul P-prima K di M dengan submodul P_S-prima W di M_S. Artinya, $W = K_S$ dan $K = W \cap M$.

Akibat 2.6 [3] Diberikan S himpunan multiplikatif di R dan R-modul M. Jika A submodul prima di M maka $(A: M)_S = (A_S: M_S)$

Bukti. Diketahui A submodul prima di M, maka (A:M) = P ideal prima di R dan A disebut sebagai submodul P-prima.

Diselidiki dua kondisi berikut

1. Kondisi $P \cap S = \emptyset$

Jika $P \cap S = \emptyset$ maka terdapat korespondensi satu-satu antara submodul Pprima A di M dengan submodul P_S -prima B di M_S sehingga $B = A_S$. Oleh karena itu,

$$P_S = (A_S: M_S)$$

Di lain pihak, P = (A: M) sehingga $P_S = (A: M)_S$.

Dengan demikian, diperoleh $(A_S: M_S) = (A: M)_S$

2. Kondisi $P \cap S \neq \emptyset$

Jika $P \cap S \neq \emptyset$ maka $A_S = M_S$ sehingga $(A_S: M_S) = (A: M)_S = R_S$.

KESIMPULAN

Dari keseluruhan pembahasan dapat disimpulkan bahwa terdapat korespondensi satu-satu antara submodul prima (primer) di R-modul M dan di R_S -modul M_S .

DAFTAR RUJUKAN

- [1] Adkins, W.A. 1992. Algebra "An Approach via Module Theory". Springer-Verlag New York, Inc., USA
- [2] Dauns, J. 1978. Prime Modules. J. Reine Angew. Math. 298, 156 181
- [3] Lu, C.P. 1995. Spectra of Modules. Comm. Algebra 23, 3741 3752
- [4] Northcott, D.G. 1968. Lesson on Rings, Modules, and Multiplicities. Cambridge University Press, London
- [5] Tavallaee, H.A., Varmazyar, R. 2008. *Semi Radicals of Submodules in Modules*. IUST International Journal of Engineering Science 19 (1-2), 21 27