PERENCANAAN TEBAL PERKERASAN LENTUR JALAN RAYA KALIBARU – GLENMORE KABUPATEN BANYUWANGI (PERBANDINGAN METODE BINAMARGA 1987 & 2013)

Muhammad Arif Hidayat¹, Taufan Abadi², Adhitya Surya Manggala³

Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Jember 1 Jl. Karimata 49, Jember 68121, Indonesia

E-mail: <u>luckyrobby8@gmail.com</u>

Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Jember ² Jl. Karimata 49, Jember 68121, Indonesia

Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Jember³ Jl. Karimata 49, Jember 68121, Indonesia

ABSTRACT

Roads are infrastructure that play a very important role in traffic flow, so that during the road service period, efforts are made to avoid problems related to road damage. Road infrastructure which is burdened by high and repetitive traffic volumes will cause a decrease in road quality that can be seen from the condition of the road surface, both structurally and functionally damaged. This study aims to re-plan the thickness of the flexible pavement on the Kalibaru highway - Glenmore Banyuwangi Regency. In this study, to find out how thick the flexible pavement of the Kalibaru - Glenmore highway in Banyuwangi Regency for the next 20 years is in 2038. In this study the authors used the Binamarga Method 1987 and 2013. In this method we have to conduct LHR surveys on these roads and do CBR data retrieval. After the data data is collected, then we can determine the Index of Pavement Thickness of the road. From the calculation results, it is known that the results of the pavement thickness with the Binamarga 1987 method are 4.5cm Lapen / Laston, 15cm Upper Foundation Layer, 10cm Bottom Foundation Layer. Whereas the thickness of road blocks with the method of Binamarga 2013 is WC air conditioner of 4cm, AC BC of 13.5cm, CTB of 15cm, LPA of Class A of 15cm.

Keywords: infrastructure, traffic flow, flexible pavement, Pavement Thickness

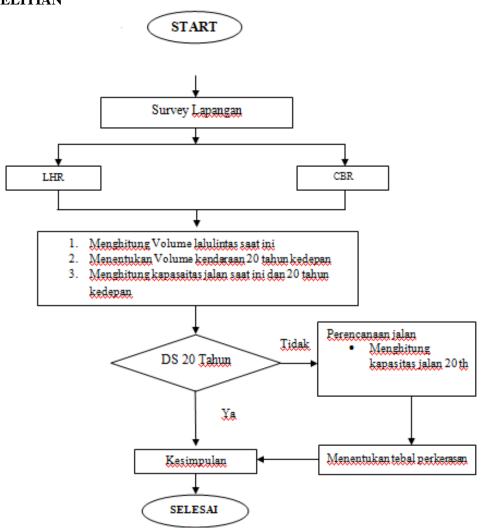
PENDAHULUAN

Jalan merupakan prasarana yang berperan penting dalam arus lalu lintas, sehingga selama masa layanan jalan tersebut diusahakan menghindari masalah yang berhubungan dengan kerusakan jalan. Prasarana jalan yang terbebani oleh volume lalu lintas yang tinggi dan berulang-ulang akan menyebabkan terjadinya penurunan kualitas jalan yang dapat diketahui dari kondisi permukaan jalan, baik secara struktural fungsional maupun yang mengalami kerusakan. Pada ruas jalan Kalibaru-Genteng merupakan jaringan jalan kolektor (KelasII) yang menghubungkan wilayah Kabupaten Banyuwangi dan sekitarnya. Sebagai salah menghubungkan satu ruas jalan yang Kabupaten dengan intensitas rata-rata kendaraan yang lewat jalan tersebut adalah

kendaraan berat. Oleh sebab itu kondisi jalan tersebut akan cepat mengalami kerusakan akibat beban kendaraan. Salah satu cara untuk mengatasi agar tebal perkerasan tidak mudah mengalami kerusakan dan dapat digunakan dalam jangka waktu yang relatif lama, maka diperlukan adanya evaluasi dan perencanaan tebal perkerasan jalan rayanya.

Berdasarkan latar belakang tersebut, maka rumusan masalah sebagai berikut :

- 1. Bagaimana tingkat kinerja dengan perhitungan jumlah volume lalu lintas, kapasitas dan derajat kejenuhan pada ruas jalan Kalibaru-Genteng Kabupaten Banyuwangi?
- 2. Berapa perencanaan tebal perkerasan yang di butuhkan untuk 20 tahun yang akan


datang pada ruas jalan Kalibaru-Genteng Kabupaten Banyuwangi ?

- 3. Bagaimana hasil perbandingan dari perhitungan tebal perkerasan menggunakan metode binamarga 1987 dan 2013 ?
- 4. Bagaimana hasil perbandingan dari perhitungan tebal perkerasan menggunakan

metode binamarga 1987 dan 2013 dengan tebal perkerasan eksisting di lapangan ?

Penelitian ini bertujuan untuk membandingkan nilai tebal perkerasan mengunakan metode Bina Marga 1987 dan 2013.

METODE PENELITIAN

Gambar 1 Bagan Alur Penelitian

Pengumpulan Data Penelitihan.

Data yang harus dikumpulkan dalam studi ini marupakan data primer, yang meliputi data volume lalu lintas, serta data skunder.

1. Data Primer

Data yang diperoleh atau dikumpulkan langsung dari lokasi penelitihan. Data primer yang dibutuhkan antara lain : volume lalu lintas,dan kondisi jalan saat ini uas

jalan pakusari – silo kabupaten jember.

a. Volume lalu lintas

Pada Volume Lalu lintas ini dapat dinyatakan dalam satuan kendaran/jam atau smp/menit. Survey ini dimaksudkan untuk mengumpulkan data volume lalu lintas perjam serta klasifikasi kendaraan. Pengamatan dilakukan selama 2 kali.

2. Data Sekunder

Yaitu berasal dari intasi pemerintahan yang menangani perencanaan jalan maupun intansi lain yang memiliki dokumendokumen yang dibutuhkan dalam perencanaan. Data sekunder yang diperlukan antara lain :

- a. Data data perencanaan jalan yang didapat dari Dinas Bina Marga.
- b. Data Penduduk

HASIL DAN PEMBAHASAN

Data hasil survey lalu lintas harian

data volume kendaraan harian (LHR) di dapat dari pengamatan langsung selama 24 jam yg dimulai pada oktober tanggal 15-16 2018 pada hari rabu-kamis jam 06-00 s/d 06-00 WIB di pakusari-silo depan balai desa kejayan, dari hasil pengamatan di peroleh data sebagai berikut:

Tabel 1 Lalu lintas harian

No	Jenis Kendaraan	Arah (Ke	endaraan/Hari)	Y1.1
No	Jenis Kendaraan	Jember	Banyuwangi	Jumlah
1	Sepeda Motor,roda 3,vespa	3332	3298	6630
2	Kendaraan ringan,mobil pribadi,pick up,mobil box,mobil hantaran.	2003	2011	4014
3	Bus	754	736	1490
4	Truck 2 as	905	922	1827
5	Truck 3 as	463	454	917
6	Truck Gandengan,semi/trailer	252	251	503
7	Kendaraan tak bermotor	82	61	143
Jumlah		7705	7652	15357

Perhitungan derajat kejunuhan (DS)

Derajat kejenuhan didefinisikan sebagai rasio arus dan kapasitas, digunakan sebagai faktor kunci dalam penentuan perilaku lalu lintas pada satu segmen jalan. Nilai derajat kejenuhan menunjukan segmen jalan mempunyai masalah atau tidak. DS dapat dihitung dengan rumus:

$$DS = Q/C$$
(1)

Dengan:

Ds = derajat kejenuhan

Q = Volume lalu lintas

C = Kapasitas

Maka kapasitas jalan:

C = C0 x fcw x fcsp x fcsf x fces(2)

Co,fcw,fcsp,fcsf,fces

di dapat dari tabel:

Tabel 2 kapasitas dasar (CO)

NO	Tipe jalan/Tipe alinyemen Dua-lajur tak-	Kapasitas dasar Total kedua arah (smp/jam)
1	Datar	3100
2	Bukit	3000
3	Gunung	2900

Tabel 3 Penyesuaian Kapasitas untuk Pengaruh Lebar Jalur Lalu-lintas untuk Jalan luar kota (FC_w)

		Lebar jalur	
		lalu-lintas	
		efektif	
NO	Tipe jalan	$(W_C)(m)$	FC_W
		Per	ajur
		3,00	0,91
		3,25	0,96
	Empat-lajur terbagi atau Jalan satu-		1,00
1	arah	3,75	1,03
		Per	ajur
		3,00	0,91
		3,25	0,96
		3,50	1,00
2	Empat-lajur tak-terbagi	3,75	1,03
		Total d	ua arah
		5	0,69
		6	0,91
		7	1,00
		8	1,08
		9	1,15
		10	1,21
3	Dua-lajur tak-terbagi	11	1,27

Tabel 4 Faktor Penyesuaian Kapasitas Untuk Pemisahan Arah (FCsp)

I	NO	Pemisah Arah SP % - %	50 - 50	55 – 45	60 - 40	65 - 35	70 – 30
ı		Dua-kijur					
ı	1	2/2	1,00	0,97	0,94	0,91	0,88
ı		Empat-					
ı	2	FC _{SP} lajur 4/2	1,00	0,975	0,95	0,925	0,90

Tabel 5 Faktor Penyesuaian kapasitas untuk pengaruh hambatan samping dan lebar bahu efektif (FCsf)

		Kelas	Factor penyesuaian untuk hambatan samping dan lebar bah FC _{SF}			
		hambatan		Lebar bahu efek	tif W _C (m)	
NO	Tipe jalan	samping	? 0,5	1,0	1,5	? 2,0
		VL	0,99	1,00	1,01	1,03
		L	0,96	0,97	0,99	1,01
		M	0,93	0,95	0,96	0,99
		H	0,90	0,92	0,95	0,97
1	4/2 D	VH	0,84	0,90	0,93	0,96
2	2/2 UD	VL	0,97	0,99	1,00	1,02
		L	0,93	0,95	0,97	1,00
		M	0,88	0,91	0,94	0,98
		H	0,84	0,87	0,91	0,95
3	4/2 UD	VH	0,80	0,83	0,88	0,93

Tabel 6 Faktor Penyesuaian Kapasitas untuk Ukuran Kota (FCCS)

NO	Ukuran kota (Juta penduduk)	Factor penyesuaian untuk ukuran kota
1	< 0,1	0,86
2	0,1-0,5	0,90
3	0,5-1,0	0,94
4	1,0-3,0	1,00
5	> 3,0	1,04

Dari tabel di atas didapatkan nilai FCcs adalah 1,00 di karenakan jumlah penduduk di banyuwangi adalah sekitar 1,6 juta.

Maka nilai C adalah:

C = 3100x1,00x1,00x1.00x1.00

C = 3100 smp/jam

Dengan jumlah kendaraan hasil pengamatan langsung tahun 2018 = 639.875 smp/jam dan lama pengamatan 24 jam,

maka Qsmp:

Tabel 7 Tabel Perhitungan Qsmp tahun 2018

		LHR 2018		
No	Jenis Kendaraan	(Jumlah/Jam)	етр МКЛ 97	Qsmp
1	Sepeda motor, roda 3,	276.25	0.25	69.0625
2	Kendaraan ringan, mob	167.25	1	167.25
3	Bus	62.083333	1.2	74.5
4	Truk 2 as	76.125	1.2	91.35
5	Truk 3 as	38.208333	1.2	45.85
6	Truk Gandengan	14	1.2	16.8
7	semi trailer/trailer	6.9583333	1.2	8.35
8	Kendaraan tak bermoto	5.9583333	0.85	5.06458
	Jumlah			241.915

Hasil perhitungan C smp/jam = 3100smp/jam dan Qsmp = 241.915 smp/kendaraan/jam, Sehingga didapat DS, sebagai berikut :

DS = Q smp/C = 241.915/3100

= 0.078036962 smp/ kendaraan/jam

(A)

Tabel 8 Tingkat pelayanan 2018

No	Tingkat Pelayanan	Kriteria	Nilai
1	А	Kondisi arus dengan kecepatan tinggi dan volume lalulintas rendah. Pengemudi dapat meilih kecepatan yang di inginkan	0.00-0.19
2	В	Dalam zone harus stabil. Pengemudi memiliki kebebasan yang cukup untuk memilih kecepatannya	0.20-0.44
3	С	Dalam zone arus stabil pengemudi dibatasi dalam memilih kecepatannya	0.45-0.74
4	D	Mendekati arus tidak stabil dimana hampir seluruh pengemudi akan dibatasi volume pelayanan berkaitan dengan aktifitas yang dapat ditolerir (diterima)	0.75-0.84
5	Е	Volume arus lalu-lintas mendekati atau berada pada kapasitas. Arus adalah tidak stabil dengan kondisi yang sering berhenti	0.85-1.0
6	F	Arus yang sering dipaksakan atau macet pada kecepatan kecepatan yang rendah. Antrian yang panjang dan terjadi hambatan- hambatan yang besar	Lebih besar dari Γ.0

Dari tabel di atas kita dapatkan tingkat pelayanan jalan Kalibaru-Glenmore Kabupaten Banyuwangi pada tahun 2018 yaitu A.

Sedangkan untuk DS tahun 2038 : Tabel 9 Tabel perhitungan Qsmp 2038

•		LHR 2018	i=5%	Qsmp
No	Jenis Kendaraan	(Kendaraan/Jam)	Qn=Q0(1+i)^N	2038
	Sepeda motor, roda 3,			
1	vespa	276.25	2.653	732.974
	Kendaraan ringan,			
	mobil pribadi, pick			
	up,mobil box, mobil			
2	hantaran.	167.25	2.653	443.764
3	Bus	62.083333	2.653	164.726
4	Truk 2 as	76.125	2.653	201.982
5	Truk 3 as	38.208333	2.653	101.378
	Truk Gandengan,			
6	semi/trailer	14	2.653	37.1462
7	semi trailer/trailer	6.9583333	2.653	18.4625
	Kendaraan tak			
8	bermotor	5.9583333	2.653	15.8092
	Jumla	h		1716.24

Hasil perhitungan C smp/jam = 3100smp/jam dan Qsmp = 1716.24 smp/kendaraan/jam, Sehingga didapat DS, sebagai berikut :

DS = Q smp/C = 1716.241/3100

= 0.553626258 smp/ kendaraan/jam

(C)

Tabel 10 Tingkat pelayanan 2038

No	Tingkat Pelayanan	Kriteria	Nilai
		Kondisi arus dengan	
		kecepatan tinggi dan	
		volume lalulintas	
		rendah. Pengemudi	
		dapat meilih kecepatan	
1	A	yang di inginkan	0.00-0.19
		Dalam zone harus stabil.	
		Pengemudi memiliki	
		kebebasan yang cukup	
		untuk memilih	
2	В	kecepatannya	0.20-0.44
		Dalam zone arus stabil	
		pengemudi dibatasi	
		dalam memilih	
3	С	kecepatannya	0.45-0.74
		1	
		Mendekati arus tidak	
		stabil dimana hampir	
		seluruh pengemudi	
		akan dibatasi volume	
		pelayanan berkaitan	
		dengan aktifitas yang	
4	D	dapat ditolerir (diterima)	0.75-0.84
		Volume arus lalu-lintas	
		mendekati atau berada	
		pada kapasitas. Arus	
		adalah tidak stabil	
		dengan kondisi yang	
5	E	sering berhenti	0.85-1.0
		Arus yang sering	
		dipaksakan atau macet	
		pada kecepatan kecepatan yang rendah.	
		Antrian yang panjang	
		dan terjadi hambatan-	
6	F	hambatan yang besar	Lebih besar dari 1.0
0	г	namoatan yang besar	Leoni oesar dari 1.0

Dari tabel di atas didapatkan tingkat pelayanan jalan Kalibaru-Glenmore Kabupaten Banyuwangi pada tahun 2038 adalah C. Angka Ekivalen (E), dari masing-masing kendaraan

Tabel 11 Angka ekivalen E

NO	Jenis Kendaraan	Angka Ekivalen (E)
1	Mobil Penumpang	0,0004
2	Bus	0,1876
3	Truck 2 Sumbu Ringan	1.3084
4	Truck 3 Sumbu	12,290
5	Truck Gandeng	14,186
6	Semi trailer/traler	13.859

Lintas Ekivalen Permulaan (LEP)

Tabel 12 Nilai Lintas Ekivalen Permulaan

No	Jenis Kendaraan	LHR 2018 (Kendarsan/Jam)	(I+i) ^M	C±(,50	Ebeban	LEP 2018
1	Kendaraan ringan, mobil pi	167.25	1.05	0.5	0.0004	0.08512
2	Bus	62.083333	1.05	0.5	0.18	5.86688
3	Truk 2 as	76.125	1.05	0.5	1.3	51.9553
4	Truk 3 as	38.208333	1.05	0.5	1.22	24.4724
5	Truk Gandengan	14	1.05	0.5	1.41	10.3635
6	Semi trailer/trailer	6,9583333	1.05	0.5	13.85	50.5958
		Jumlah				143.289

Jadi jumlah LEP yang di dapatkan dari hitungan tabel di atas adalah sebesar 143.289.

Lintas Ekivalen Akhir (LEA)

Tabel 13 Nillai Lintas Ekivalen Akhir

No	Jenis Kendaraan	LHR 2018 (Kendaraan/Jam)	(1+i)^20	C=0,50	Ebeban	LEA 2038
Kendaraan ringan,						
	mobil pribadi, pick					
	up,mobil box, mobil					
1	hantaran.	167.25	2.6533	0.5	0.0004	0.08875
2	Bus	62.083333	2.6533	0.5	0.18	14.8253
3	Truk 2 as	76.125	2.6533	0.5	1.3	131.289
4	Truk 3 as	38.208333	2.6533	0.5	1.22	61.8406
5	Truk Gandengan	14	2.6533	0.5	1.41	26.1881
6	semi trailer/trailer	6.9583333	2.6533	0.5	13.85	127.853
Jumlah						

Jadi jumlah LEA yang di dapatkan dari hitungan tabel di atas adalah sebesar 362.084.

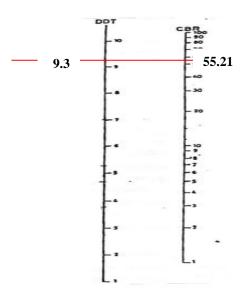
Lintas Ekivalen Tengah (LET)

Dari hasil analisa menggunakan microsoft excel di dapatkan nilai lintas ekivalen tengah (LET) sebagai berikut :

LET =
$$\frac{1}{2}(LEP + LEA)$$

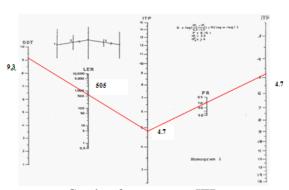
= $\frac{1}{2}(143.289 + 362.084)$
= 252.686

Jadi jumlah LET yang di dapatkan dari hitungan di atas adalah sebesar 362.084.


Lintas Ekivalen Rencana (LER)

Dari hasil analisa menggunakan microsoft excel di dapatkan nilai lintas ekivalen rencana (LER) sebagai berikut :

Jadi jumlah LER yang di dapatkan dari hitungan di atas adalah sebesar 505.373.


Daya Dukung Tanah Dasar (DDT)

Pada kekuatan konstruksi perkerasan jalan sangat tergantung dari sifat - sifat dan daya dukung tanah (DDT) dasar. Dari bermacam - macam cara pengerjaan untuk menentukan kekuatan tanah dasar, yang umum dipakai adalah cara CBR (California Bearing Ratio). CBR adalah perbandingan antara beban penetrasi suatu bahan terhadap bahan standar dengan kedalaman dan kecepatan penetrasi yang sama.Daya dukung tanah ditentukan berdasarkan grafik korelasi antara nilai CBR tanah dasar = 55.21 % (Sumber Bina Marga, 2012). Grafik nilai korelasi CBR dan DDT dapat dilihat pada Gambar dibawah ini:

Gambar 2 Nilai korelasi data CBR dan DDT.

Perhitungan berikutnya dengan memperhatikan Nomogram Indeks Tebal Perkerasan (ITP), di bawah ini.

Gambar 3 nomogram ITP

Penentuan indek tebal perkerasan Bina Marga 1987

Pada Indeks Tebal lapisan perkerasan dinyatakan dengan rumus, sebagai berikut :

ITP = a1.D1 + a2.D2 + a3.D3 Perhitungannya sebagai berikut :

ITP = a1D1+a2D2+a3D3

 $4.7 = (0.35 \times D1) + (0.12 \times 15) + (0.12 \times 10)$

4.7 = (0.35D1) + 1.8 + 1.20

D1 = 4.7 - 3.00/0.35

D1 = 4.85 Cm

D1 = 5 Cm (di sesuaikan mengikuti Tabel Batas Minimum Tebal Lapisan Permukaan)

D1 = 5 cm (LASTON)

D2 = 15 cm (Batupecah (Kelas C))

D3 = 10 cm (Batu sirtu (Kelas B))

Perhitungan Perkerasan Bina Marga 2013

Perhitungan perkerasan lentur dengan metode Bina Marga 2013, langkah-langkahnya sebagai berikut:

- a. Penetapan Umur Rencana (UR)
- b. Klasifikasi Kendaraan dan Nilai VDF standar
- c. Menentukan Faktor pertumbuhan lalu lintas(i)
- d. Menghitung Faktor pertumbumhan lalu lintas sesuai umur rencana (R)
- e. Menentukan Nilai Multi Traffic Multiplier (TM)
- f. Menentukan Faktor Distribusi Lajur (DL)
- g. Menghitung Beban Sumbu Standar Kumulatif
- h. Pemilihan Jenis Perkerasan
- i. Solusi Desain 2 Pondasi Jalan minimum
- j. Desain perkerasan lentur opsi biaya minimum

Penetapan Umur Rencana (UR) = 20 tahun

Umur Rencana = 20 tahun (direncanakan), dimana pada Manual

Perkerasan jalan No.02/M/BM/2013 halaman 9, yaitu Lapisan lentur berbutir dan CBT. Tabel 14 umur rencana

NO	Lapisan Perkerasan	Elemen Perkerasan	Umur Rencana (Tahun)		
		Lapisan atas dan lapisan berbutir dan CBT	20		
		Pondasi jalan			
1	Perkerasan Lentur	Semua lapisan jalan untuk area yang tidak diijinkan sering ditinggikan akibat pelapisan ulang, missal : jalan perkotaan, underpass, jembatan, torowongan Cement Treateed Based	40		
		Lapis pondasi atas,			
2	Perkerasan kaku	lapis pondasi bawah, lapis pondasi semen dan pondasi jalan			
3	Jalan Tanpa Penutup	Semen elemen	Minimum 10		

Sumber: Bina Marga 2013.

Klasifikasi Kendaraan dan Nilai VDF4 standar

Tabel 15 Nilai VDF4 standar

1 00 01 10 1 (1101) 21 . 500110011						
No	Jenis Kendaraan	VDF4				
1	Motor	0				
2	Mobil	0				
3	Bus	1				
4	Truk sumbu 2 as	0.8				
5	Truk sumbu 3 as	7,6				
6	Truk berat (Gandengan) Trailer	36,9				

Sumber: Bina Marga 2013.

Tabel 16 Pertumbuhan lalu lintas

No	Tipe Jalan	2011 - 2020	>2021 – 2030
1	Arteri dan Perkotaan (%)	5	4
2	Kolektor rurel (%)	3,5	2,5
3	Jalan Desa (%)	1	1

Sumber: Bina Marga, 2013

Faktor Pertumbuhan Lalu Lintas Sesuai Umur Rencana

Untuk menghitung faktor pertumbuhan lalu lintas sesuai umur rencana (R) dihitung sebagai berikut :

i = 0.05 (5%)UR = 20 Tahun

 $R = (1+0.01i)^{N}UR - 1/(0.01i)$

= 0.01005/0.0005

= 20.0953

Traffic multiplier (TM)

Traffic multiplier (TM) digunakan untuk mengoreksi ESA4 akibat kelelahan lapisan aspal. Menurut pdf manual desain perkerasan jalan raya no 2 binamarga 2013 hal.36, Nilai TM kelelahan lapisan aspal (TM lapisan aspal) untuk kondisi pembebanan yang berlebih di Indonesia adalah berkisar 1,8 – 2 maka kita akan ambil rata ratanya yaitu 1,9.

Nilai Distribusi Lajur (DL)

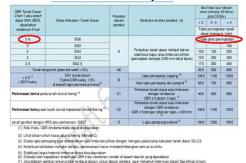
Nilai Distribusi Lajur di tentukan oleh tabel Faktor Distribusi lajur yaitu sebagai berikut :

Tabel 17 Faktor Distribusi Lajur

			- ;··· · · · · · · · · · · · · · · · · ·				
	No	Jumlah lajur setiap arah	Kendaraan Niaga pada lajur desain (% terhadap populasi kendaraan niaga)				
	1	1	100				
	2	2	80				
	3	3	60				
	4	4	50				
Sumber: Bina Marga 2013							

Dari tabel didapatkan nilai DL nya adalah 80 dikarenakan jumlah jalur setiap arah pada lokasi penelitian adalah 2.

Menghitung Beban Sumbu Standar Kumulatif


Tabel 18 Perhitungan Beban Sumbu Standar Kumulatif

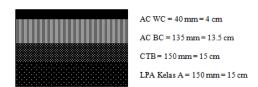
	Jenis	LHR 2018	VDF 4	ESA4	CESA4	CESA5		
No	Kendaraan	(Kendaraan /Jam)		(VDF4*LH R 2018)	(ESA4*R*36 5*DL)	(CESA4*T M)		
1	Kendaraan ringan,mobil pribadi,pick up,mobil box,mobil hantaran.	167,25	0	0	0	0		
2	Bus	62,08333333	1	62,083333	364294,1156	692158,82		
3	Truck 2 as	76,125	0,8	60,9	357350,523	678965,994		
4	Truck 3 as	38,20833333	7,6	290,38333	1703918,49	3237445,13		
5	Truck Gandengan,s emi/trailer	20,95833333	36,9	773,3625	4537955,564	8622115,57		
Jumlah 1323068								
Sumber: Hasil pengamatan dan hitungan, 2018								

Solusi Desain Pondasi Jalan minimum

Solusi desain pondasi jalan minimum dapat diliat pada tabel 4.20, Solusi desain pondasi jalan minimum di sesuaikan pada besar CBR Tanah Dasar pada lokasi yang akan di desain tebal perkerasan lentur jalan rayanya

Tabel 19 Solusi desain 2 pondasi

Dikarenakan nilai CBR lebih dari 6 maka tidak perlu ada peningkatan


Desain Perkerasan Lentur Opsi Biaya Minimum

Untuk menentukan tebal perkerasan lentur pada metode binamarga 2013 dapat menggunakan tabel perkerasan lentur opsi biaya minimum dapat diliat pada tabel dibawah ini:

Tabel 20 Desain perkerasan lentur opsi biaya minimum

			STRUKTUR PERKERASAN							
			F1 F2 F3 F4				F5	F6	F7	F8
			Lihat desain 5 & 6			6	Lihat BaganDesain 4 untuk alternatif lebih murah ²			
		Pengulang an beban sumbu desain 20 tahun terkoreksi di lajur desain(pan gkat 5)(106 CESA5)	< 0,5	0,5	2,0 _ 4,0	4,0 -30	30 - 50	50 - 100	100 - 200	200 - 500
		Jenis permukaan berpengika t	HRS, SS, atau HRS (6) Penm ac		AC, atau AC,	AC.				
		Jenis lapis Pondasi dan lapis Pondasi bawah	Lapis Pondasi Berbutir A			Cen	Cement Treated base (CTB) (= cement treated base A.)			
				KET	EBAL	ANLA	APIS PERKERASAN (mm)			
		HRS WC	30	30	30					
		HRS Base	35	35	35	\cap				
		AC WC				40	40	40	50	50
ſ	Lapisan beraspal	ACBC*				135	155	185	220	280
Π	CTB atau	CTB ^c		l l		150	150 150 150 150			
	LPA Kelas A	LPA Kelas A ²	150	250	250	150	150	150	150	150
LPA Kelas A, LPA Kelas B atau kerikil alam atau lapis distabilisasi dengan CBR >10% Sumber: Bina Marga 2013			150	125	125					

Dikarenakan jumblah hasil perhitungan pada CESA5 adalah 13230686 atau 13,23 x 105 maka perkerasan yang di dapatkan adalah sebagai berikut:

Gambar 4 lapisan tebal perkerasan 2013

Kesimpulan dan Saran

kesimpulan dalam penelitian ini adalah sebagai berikut:

1. Kondisi kinerja pada ruas jalan raya Kalibaru - Glenmore Kabupaten Banyuwangi berdasarkan survey tanggal 22-23 Oktober 2018 di dapat volume lalu-lintas tahun 2018 = 241.915 kendaraan/jam, didapat DS = 0.078037 smp/kendaraan/jam dengan tingkat pelayanan (A) yaitu kondisi arus dengan kecepatan tinggi dan volume lalu-lintas rendah. Pengemudi dapat memilih kecepatan

- yang diinginkannya tanpa hambatan. Sedangkan untuk peramalan kondisi lalu-lintas dengan asumsi i = 5% maka didapat Q = 1716.241 kendaraan/jam dengan DS tahun 2038 yaitu 0.553626 dengan tingkat pelayanan (C) adalah dalam zone arus stabil pengemudi dibatasi dalam memilih kecepatan.
- 2. Untuk perhitungan tebal perkerasan lentur metode Bina Marga 1987 dengan nilai CBR=55,21% (Sub Grade) dan nilai ITP = 4,7. Hasil perencanaan tebal perkerasan lentur dengan metode Bina Marga 1978 di dapat : LASTON = 5 cm, Lapisan Pondasi Atas (Batu pecah CBR min.35%) = 15 cm, Lapisan pondasi Bawah (Batu sirtu CBR min.65%) = 10 cm. Untuk hasil perhitungan dengan Metode Bina Marga 2013, didapat : AC WC = 4 cm, AC BC = 13,5 cm, CTB = 15 cm, LPA Kelas A (CBR min.90%) = 15 cm.
- 3. Hasil perhitungan tebal perkerasan lentur kedua metode tersebut yaitu : Binamarga 1987 = 30 cm, Binamarga 2013 = 47,5 cm. Selisih tebal perkerasan setebal 17,5 cm (lebih tebal metode Bina Marga 2013).
- 4. Dari hasil survey didapatkan tebal eksisting dilapangan 25cm. Kemudian hasil perhitungan menunjukan pebandingan ke dua metode tersebut dengan tebal eksisting di lapangan yaitu sebagai berikut : Binamarga 1987 = 5 cm, Binamarga 2013 = 22,5 cm.

Saran

Saran dalam penelitian ini adalah berikut:

- 1. Perlu adanya perhitungan ulang pada tebal perkerasan baik dengan metode Bina Marga tahun 1987 atau 2013. Hal ini dikarnakan kendaraan yang melewati jalur tersebut terdapat kendaraan berat (Jawa-Bali).
- 2. Untuk peneliti selanjutnya di harapkan dapat membandingkan perbandingan eksisting tebal perkerasan dilapangan dan tebal perencanakan yang di rencanakan dengan lebih detail.
- 3. Perlunya penegakan peraturan untuk beban angkutan (tonase) pada kendaraan berat pada jalan raya Kalibaru Glenmore Kabupaten.

REFRENSI

- Alamsyah , Ansyori A, Ir.MT. 2001. Rekayasa Jalan Raya. Malang : UMM Press
- Departemen Pekerjaan Umum. 1987. Petunjuk Perencanaan Tebal Perkiraan Lentur Jalan Raya. Jakarta: Binamarga
- Departemen Pekerjaan Umum. 2013. Manual Desain Perkerasan Jalan. Jakarta : Binamarga
- Sukirman S. 2010. Perencanaan Tebal Perkiraan Lentur. Bandung : Nova Bandung