Perancangan Sistem Pendingin dengan Ammonia Liquid pada Cold Storage

Frida Hasana, Endang Sri Rahayu, Handoko Utomo Yogyarto, Rudy Yulianto, Miladiah Setio Wati

Abstract


Cold storage yang baik harus memiliki suhu rendah dan stabil dalam pendistribusian udara dingin agar produk yang disimpan terjaga kualitasnya dan dapat tercapainya extended shelf life dari produk yang disimpan. Penelitian ini bertujuan untuk merancang dan menganalisa sistem otomasi pendingin di cold storage yang terdiri dari cold room dan ruangan air blast freezer. Ruangan cold room dirancang agar memiliki output temperatur sebesar -20oC. Sedangkan ruangan air blast freezer dirancang agar memiliki output temperatur sebesar -40oC dengan temperatur produk yang diharapkan sebesar -18 oC. Penelitian ini menggunakan HOBO temperature data logger sebagai alat bantu untuk mengukur dan mencatat suhu secara berkala. Dari hasil pengamatan dan analisis, didapatkan temperatur ruangan cold room dapat tercapai di suhu -18 oC sampai dengan -20 oC dan temperatur ruangan air blast freezer dapat tercapai di suhu -35 oC sampai dengan -40 oC dalam waktu pendinginan selama 6 - 8 jam. Temperatur produk dapat tercapai di suhu -15 oC sampai dengan -18 oC pada ruangan air blast freezer, sehingga dapat disimpulkan bahwa perancangan sistem otomasi pendingin di ruangan cold storage dapat bekerja dengan baik.


Keywords


Cold Storage; Air Blast Freezer; HOBO Temperature Data Logger

References


J. D. Hunt et al., “Ammonia Airship Cooling: An Option for Renewable Cooling in the Tropics,” Energies (Basel), vol. 17, no. 1, Jan. 2024.

S. K. G. Shanmugam and M. Mital, “An ultra-low ammonia charge system for industrial refrigeration,” International Journal of Refrigeration, vol. 107, pp. 344–354, Nov. 2019.

L. Gong, Z. Zhang, M. Chen, S. Taylor, and X. Wang, “Study on The Carbon Footprint of Cold Storage Units Using Low-GWP Alternative Refrigerants,” J Clean Prod, vol. 430, Dec. 2023.

“Calculating HFC and PFC Emissions from the Manufacturing, Installation, Operation and Disposal of Refrigeration & Air-conditioning Equipment (Version 1.0).”

V. Ramiah, M. Gangemi, and M. Liu, “Environmental Policies Post the Kyoto Protocol on Climate Change,” in Handbook of Environmental and Sustainable Finance, Elsevier, 2016, pp. 25–54.

S. Tian, S. Shao, and B. Liu, “Investigation on Transient Energy Consumption of Cold Storages: Modeling and a Case Study,” Energy, vol. 180, pp. 1–9, Aug. 2019.

M. J. Molina and F. S. Rowland, “Stratospheric Sink for Chlorofluoromethanes: Chlorine Atomc-catalysed Destruction of Ozone,” Academic Press, 1973.

Susan. Solomon, Climate Change 2007 : The Physical Science Basis. Cambridge University Press, 2007.

“Kyoto Protocol to The United Nations Framework Convention on Climate Change United Nations,” 1998.

R.K Dreepaul and K.Elahee, Barriers to the Use of Low GWP Refrigerants in the Refrigeration and Air Conditioning Sector in Mauritius. IEEE, 2018.

S. A. Zarabadi, M. Mafi, and E. Taheran, “A Comprehensive Study of The Performance, Economic and Environmental Impact of Multi Purpose Refrigeration Systems Utilizing Eco-Friendly Refrigerants for Two-Modulating Cold Storage,” International Communications in Heat and Mass Transfer, vol. 164, May 2025.

S. S. Butt, T. Miyazaki, Y. Higashi, and K. Thu, “Achieving Sustainability in Ultra-Low Temperature (ULT) Cold Storage Using Low-GWP Refrigerants: A Case for The Tuna Industry in Japan,” Energy, vol. 316, Feb. 2025.

A. Yatim, E. P. Wijaya, R. Irwansyah, A. S. Auzani, and Y. Liu, “Risk Assessment of Flammable Natural Refrigerant Application in Air Conditioning Systems,” in IEEE International Conference on Industrial Engineering and Engineering Management, IEEE Computer Society, 2022, pp. 1078–1082.

J. Fitó, A. Coronas, S. Mauran, N. Mazet, M. Perier-Muzet, and D. Stitou, “Hybrid System Combining Mechanical Compression and Thermochemical Storage of Ammonia Vapor for Cold Production,” Energy Convers Manag, vol. 180, pp. 709–723, Jan. 2019.

J. Lu, Y. Li, B. Li, Q. Yang, and F. Deng, “Research on Re-Liquefaction of Cargo BOG Using Liquid Ammonia Cold Energy on CO2 Transport Ship,” International Journal of Greenhouse Gas Control, vol. 129, Oct. 2023.

S. M. R. Bantillo, G. A. C. Callejo, S. M. K. G. Camacho, M. A. Montalban, R. E. Valderin, and R. V. C. Rubi, “Future Trends of Natural Refrigerants: Selection, Preparation, and Evaluation,” in The 3rd International Electronic Conference on Processes, Basel Switzerland: MDPI, Aug. 2024, p. 9.

A. J. Boero et al., “Environmental Life Cycle Assessment of Ammonia-Based Electricity,” Energies (Basel), vol. 14, no. 20, p. 6721, Oct. 2021.

[A. Smith and B. Jones, “Reducing Carbon Footprint in Cold Chain Systems,” Energy for Sustainable Development, vol. 58, pp. 123–130, 2022.

[C. Lee and D. Kim, “Low-GWP Refrigerant Alternatives in Cold Storage,” J Clean Prod, vol. 305, 2021.

E. Martinez and F. Lopez, “Sustainability Assessment of Refrigeration Technologies,” Renew Energy, vol. 95, pp. 140–149, 2020.




DOI: https://doi.org/10.32528/elkom.v7i2.22636306

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Jurnal Teknik Elektro dan Komputasi (ELKOM)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

View My Status                                                                       Indexing Service

                             

UNMUH

   Publisher :
   UNIVERSITAS MUHAMMADIYAH JEMBER
   Jl. Karimata No. 49 Jember 68121 East Java
   Website : www.unmuhjember.ac.id
   Email : kantorpusat@unmuhjember.ac.id

Editorial Address :
Electrical Engineering
Faculty of Engineering
UNIVERSITAS MUHAMMADIYAH JEMBER
Jl. Karimata No. 49 Jember 68121 East Java